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Abstract

A specification language suited to specifying systems that exhibit ongoing behaviors
is described and illustrated. The initial stages in the development from specifications in
this language towards implementations are discussed.

1 Introduction

1.1 The Virtues of Specification

In the course of software development, a formal specification of the system being devel-
oped can be useful for two purposes:

— to serve as the contract between specifier and implementor, defining the system to
be constructed, and

— to provide early feedback (i.e., prior to actual development and fielding of the com-
plete system), so that actual needs can be accurately predicted.

Specification languages facilitate both these activities by disregarding implementation
concerns, particularly those of efficiency. They are populated with constructs tailored
for ease of expression, rather than ease of implementation (in contrast to programming
languages, whose makeup generally reverses these priorities). This frees the specifier to
more readily state what the system is to do, without the need to dictate how 1t is to do
it. Mechanical assistance can be brought to bear in the task of deriving a satisfactorily
efficient implementation from such a specification (this is the primary role of program
transformation techniques). In any system development process that strives to bridge the
gap between informal desires residing in peoples’ heads and the programs that implement
those ideas, formal specifications can serve as a crucial stepping stone.

1.2 Systems Exhibiting ‘Behaviors’

In these notes I report on a specification language, Gist, designed for specifying systems
that exhibit ongoing behaviors. Examples of such systems include a package router (a
mechanism to sort postal packages into one of several bins depending upon each package’s
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destination), an elevator mechanism for transporting passengers to their destinations in
a multi-story building, and a library database system to keep track of a lending library’s
books. The complexity of such systems often lies in the complexity of their ongoing inter-
actions with their environments. As will be shown, the goal of supporting the specification
of such ‘behaviors’ motivates the makeup of the specification language Gist. Tasks that
do not exhibit such behaviors may be better specified in a different style of language.
For example, sorting, searching, parsing, and unification can all be conveniently char-
acterized as functions which compute an output given some input; for these, a purely
applicative language (no side effects) seems appropriate for the purposes of specification.
In contrast, Gist is founded on the notion of state, and state changes, the very antithe-
sis of the applicative style. Nevertheless, the virtues of specification apply across many
different styles of tasks: the clarity of specifications promote understandability, analysis
and modification; in contrast, implementations’ interwoven nature promotes efficiency at
the expense of these other properties.

1.3 What Follows
These notes are structured as follows::

Section 2: a simple example on which to demonstrate the Gist style of specification.

Section 3: a more complete version of the simple example introduced in Sect. 2. This
more complete version raises some issues that have relevance to formal specification.

Section4: description of another problem, that of elevators serving passengers in a
multi-story building. The Gist specification of this problem is shown, reinforcing the
style of specification and use of specification language constructs introduced in the
package router problem.

Section 5: a look at the initial stages in the development from a specification of the
system as a whole towards the specifications of the individual components of that
system, a necessary precursor to implementation of those components. This is illus-
trated upon the elevator problem, where the interfaces between elevator system and
passengers are derived at the same time as the system-wide requirements are divided
into pieces and allocated to individual components.

Section 6: a brief report upon the work that has accompanied the development and use
of Gist, and the relationship of this style of specification to other approaches and
techniques in the broader research community.

2 An Example - the Ideal Package Router

The first example is an idealized version of the ‘package router’ problem. The full form
of this problem will be presented later in Section 3. The reasons for starting with an
idealized version are twofold: first, 1t serves as a small and simple example with which
to illustrate the Gist style of specification — simultaneously introducing both a complex
example and the details of a specification language at the same time would probably be
overwhelming; second, it reflects a plausible approach to the design of such a system —
starting by describing an idealized version of the system we would like to implement.



Fig. 1. Package router

The package router is a system for distributing packages into destination bins.

Packages arrive at a source station at the top, and are fed into the network,
which is a binary tree consisting of switches connected by pipes. The terminal
nodes of the binary tree are bins.

Once fed from the source station into the system, each package moves down-
ward through the pipes and switches until it reaches a bin. Fach package has
some particular bin as its desired destination, and the task of the system is to
set the switches so that each package reaches its destination bin. The setting of
a switch cannot be changed while a package is present in the switch (for fear of
damaging the package).

2.1 Overall Issues of Specification

The ultimate goal is to develop the software to control the package router’s switches.
We begin by formally specifying the entire package routing system as a way to implicitly
specify the behavior required of the switch controller. Our specification describes packages
arriving at the source, being released into the topmost pipe, and moving through the
routing mechanism via pipes and switches. Requirements such as packages getting to
their correct destination bins, and switches not being changed while packages are in
them, will be included. Our intent in specifying a system such as the package router is
to describe all the possible and desirable behaviors of that system.

Denotation of a Gist Specification: A specification denotes a set of behaviors, where a
behavior comprises a sequence of transitions between states. The intuition behind this
terminology is explained next.
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By behavior we mean a sequence of transitions. For example, when specifying the
package router, a behavior will involve transitions such as a package arriving at the
source, followed by a switch’s setting changing, then the package moving into the pipe
that emerges from the source, etc.

Each behavior comprises a sequence of states, linked by transitions. Think of a state
as a ‘snapshot’ of the entire system at some moment. For example, Fig.1 shows the
system in a state in which there are several packages present (one at the source, one in a
pipe, several in bins). The locations of all these packages, their desired destinations, the
settings of switches, indeed, the topology of the entire package routing network, comprise
the information in that state. A transition is one or more changes from one state to the
next. For example, the topmost switch could change from being set to direct packages
rightwards to instead direct packages leftwards. The package in the source could move
downward into the topmost pipe. Within a single transition there must be at least one
such change, and possibly many.

The specification denotes a set of behaviors, making it possible to model systems
with many possible and desirable behaviors. For example, in the package router system,
some behaviors would involve a package arriving at the source with the leftmost bin as
its destination, while other behaviors would involve a package arriving at the source with
some other bin as its destination. Another source of variation comes from the switches
within the system, which are free to change their settings at any time, provided only that
packages get routed to their destinations. The former example (alternative destinations of
a package arriving at the source) illustrates variability in the environment of the system
we are to implement, whereas the latter (switch settings) illustrates variability in the
acceptable behaviors of the portion to be implemented. Both of these are manifest as
multiple behaviors in the denotation of the specification.

Closed-world Nature of Specification: Notice that in describing the package router, we
describe not only the portion to be implemented — switches — but also (some of) the
environment in which that portion resides — packages arriving at the source and moving
through the router. In this way, all constraints imposed on the implementation by its
environment are made explicit, as 1s all information on which it can rely. We call this a
‘closed system’ style of specification, because the specification denotes an entire system
whose behaviors can be examined without reference to a larger, unspecified, environment.

For simple input-output tasks, closed system specification is trivially achieved, for
example, the specification of a square-root program stating that its input must be a non-
negative number. For systems with ongoing behavior, however, there is typically much
more choice in just how much of their environment to model in the specification. Often
the specification can be clearer if more than the absolute minimum of the implementa-
tion’s environment is included. For example, formal specification of the switch control
mechanism could, as a bare minimum, comprise only the switch-setting-changing reac-
tions required in response to the arrival of packages at various locations. It would be hard
to discern from such a specification whether or not the mechanism would in fact route
packages to their destination bins. In contrast, our specification will state this directly
as a property required of the whole system.
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Generate and Test Style of Specification: There is one more aspect that permeates the
style that we recommend for systems of ongoing behavior, namely the adoption of a
‘generate and test’ style of specification. We find it convenient to have our specification
describe a set of straightforward possible behaviors, and use constraints to rule out the
undesirable ones. For example, the core of our specification of the router will describe all
possible routing behaviors: those in which packages get routed to the wrong bins as well
as those in which packages get routed to the right ones. We then impose constraints on
these behaviors, to discard all those that do not satisfy our requirements (including the
one that all packages reach their desired destination).

This generate-and-test style is not new; consider non-deterministic accepting au-
tomata. Also, consider the well-known specification of sorting as being the generation of
all possible permutations of the input, followed by the discarding of all but the ordered
one(s). We merely apply this same principle to the specification of ongoing behavior.

Structure of a Gist Specification: The subsections that follow introduce the details of
specification in Gist. These are organized into three areas, corresponding to the three
main portions of a Gist specification:

— declarations of the contents of the states that make up a specification’s behaviors
(Sects. 2.2 and 2.3),

— top-level statements that produce the transitions between states, and thus give rise
to the behaviors denoted by the specification (Sect. 2.4), and

— constraints that serve to discard unwanted behaviors from the denotation (Sect. 2.5).

How these portions together determine the denotation of a Gist specification is presented
in Sect. 2.6, and finally the uses of Gist’s constructs in the package router example are
summarized in Sect. 2.7.

Implementation of a Specification: A Gist specification denotes a set of behaviors. An
implementation of such a specification must denote a non-empty subset of those behav-
io1s.

2.2 Specifying What Goes in a State

What are the contents of the states that make up our specification’s behaviors? For
the package router, states hold information modelling the routing network itself (source,
pipes, switches and bins, and how these are connected), and the packages that flow
through this network (their locations and destinations).

To model the state of a system, Gist provides objects, and relations among objects.
Objects in the system being specified, e.g., packages, switches and bins, are typically
modelled by Gist’s objects. Other information about the system, for example, where a
package 1s currently located, the direction in which a switch is currently set, are typically
modelled by Gist’s relations.

It is convenient to suppose that objects are typed, and that types can be formed into
hierarchies, as is common in many languages. For example, package and switch will be
distinct types (no object can be both a package and a switch at the same time). Location
is a type (the possible locations of a package), each instance of which must be exactly
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one of: the source, a pipe, a switch, or a bin. Gist’s types are simpler than abstract data
types common to other languages — there is no encapsulation of operations with types.

Gist’s relations may be of arbitrary arity — binary relations are the most common,
but n-ary (for all non-negative integer values of n) are equally admissible. Relations hold
among objects. Thus to represent the location of a package, we may define a binary
relation Package-Location to hold between a package and the location of that package.
Relations may be queried to find out whether or not they hold between objects. For
example, if p denotes a package, and 1 denotes a location, then Package-Location(p,1)
denotes a query of whether Package-Location holds between p and 1.

We can ask arbitrary queries of relations — for example, given a package p, we may
ask for any location to which is it related by the Package-Location relation, thus:
any 1 | Package-Location(p, 1) .

Likewise, given a location 1, we may ask for any package related to it by the
Package-Location relation, thus: any p | Package-Location(p, 1) .

This capacity to make arbitrary queries of relations is known as fully associative, and
is appropriate for specification. There 1s no need to provide inverses of relations, since
the inverse query is just as easy to issue. Of course, in implementing specifications, the
particular relational queries that are issued, their frequency, and the desired space/time
tradeoffs, will combine to determine the appropriate structures to be used to hold the
information, and algorithms to retrieve that information.

More complex queries can be constructed by the usual logical connectives and quan-

tification. For example, to ask whether all packages are located at the same location:
exists l:location | for-all p:package | Package-Location(p, 1) .
(The syntax “for-all p:package | Package-Location(p, 1)” is that of universal
quantification — p 1s a quantified variable whose values may range over objects of type
package; the predicate of the quantification — Package-Location(p, 1) — follows
these quantified variable declarations, separated from them by the “|” symbol. Existen-
tial quantification is written similarly, e.g., exists l:location | ...)

The fragments of Gist shown below declare the types, the relations among types, and
some of the constraints on these types and relations, used to represent the objects in the
package router specification. The order of declarations is not important, so I have chosen
to group the type declarations first, etc.

type location;

type source subtype-of location;
type pipe subtype-of location;
type switch subtype-of location;
type bin subtype-of location;
type package;

relation Package-Location(package, location);
relation Package-Destination(package, bin);
relation Source-Outlet(source, pipe);
relation Pipe-Outlet(pipe, switch union bin);
relation Switch-Outlet(switch, pipe);
relation Switch-Setting(switch, pipe);
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constraint Unique-Source
not exists sl:source, s2:source | sl /= s2;

constraint Unique-Source-Outlet
not exists pl:pipe, p2:pipe |
pl /= p2 and
Source-Outlet(the source, pl) and
Source-Outlet(the source, p2);

constraint Switch-Set-To-Outlet
for-all sil:switch, pl:pipe |
Switch-Setting(s1l, pl) implies
Switch-Outlet(sil, pl);

constraint Unique-Switch-Setting
not exists s:switch, pl:pipe, p2:pipe |
pl /= p2 and
Switch-Setting(s, pl) and
Switch-Setting(s, p2);

In the above, location, source etc., are defined as types. The states within the
specification’s behaviors may contain objects of these types. The types source, pipe,
switch and bin are further declared to be subtypes of type location, so that any object
that is one of those types is also of type location.

Source-Outlet, Pipe-Outlet etc., are defined as relations. The states within the
behaviors denoted by the specification may contain instances of these relations holding
among objects. In declaring a relation, the types of the objects it may relate are given
For example, relation Source-Outlet is declared to relate objects of type source to
objects of type pipe; only objects of these types may be related by Source-Outlet.

Unique-Source, Unique-Source-Outlet, Switch-Set-To-Outlet and
Unique-Switch-Setting are defined as constraints. Constraints impose restrictions on
the behaviors that the specification can denote. The Unique-Source constraint prohibits
there from being two distinct objects of type source. The Unique-Source-Outlet pro-
hibits there from being two distinct pipes to which the the source is related by relation
Source-Outlet. The Switch-Set-To-Outlet constraint prohibits each switch’s setting
from being to anything other than one of its outlets (in other words, a switch can only
be set to direct packages towards one of its outlets, not to some arbitrary location any-
where in the router). Constraints such as these may seem trivially obvious to anyone
looking at the picture in Fig. 1, but it 1s necessary to state them explicitly in the formal
specification. For brevity, T have omitted similar constraints on the other relations (e.g.,
uniqueness of location and destination for each package, the acyclic topology of the tree
ete.).

In general, a Gist constraint is expressed as a predicate; in order for a behavior to be
allowed, every state of that behavior must satisfy every constraint. A behavior in which
one (or more) of the states does not satisfy a constraint is said to be ‘anomalous’; and
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is not included in the denotation of the specification; this will be discussed further in
Sect. 2.6. Note that while these constraints restrict the topology of the router network
within each state, they do not prohibit the topology from changing from state to state —
for example, I have made no mention of any constraint prohibiting the source from being
connected to one pipe in one state, and a different pipe in the next state! One of Gist’s
underlying assumptions is the so-called ‘frame’ property — in a transition from one state
to the next, changes take place to only the information explicitly changed; all else remains
the same. Thus if nothing in the specification ever explicitly changes the connectivity of,
for example, the source to a pipe, we are assured that it will remain constant throughout
every behavior. We can, if need be, write constraints that span multiple states, and so
prohibit certain transitions that we wish to exclude. We will see an example of one of
these constraints later.

Remarks: 1t is obvious from the above fragment of the Gist specification that there are
many opportunities for syntactic abbreviations. In these notes, I generally avoid the use
of abbreviations, favoring a somewhat verbose but simple form of the language.

It is also obvious that the specification of a common structure such as a binary tree is
likely something that we would wish to reuse, and so it would be worthwhile to provide
generic such definitions, and allow their instantiation to the particular task in hand.
Again, for simplicity this practice has not been followed in these notes — instead, the
basic form of Gist is used, with an emphasis on presenting the fundamentals of behavior
oriented specification.

2.3 Implicit Information — More of What Goes in States

The relations introduced earlier (Source-Outlet, etc.) must have their values explicitly
inserted and removed by the specification (we will see shortly how this is done). Gist
provides another class of relations, called implicit relations, whose values are implicitly
defined in terms of other information in the specification. An implicit relation is defined
by means of a predicate expressed over the objects that could participate in the relation
— in a given state, the relation holds among those objects if and only if the predicate
is true of those objects when evaluated in that state. The fragment of Gist below shows
the definitions of three such relations:

implicit relation Immediately-Below(lower:location, upper:location)
iff Source-Outlet(upper, lower) or
Pipe-Outlet(upper, lower) or
Switch-Outlet (upper, lower) ;

implicit relation Somewhere-Below(lower:location, upper:location)
iff Immediately-Below(lower, upper) or
exists intermediate:location |
Somewhere-Below(lower, intermediate) and
Immediately-Below(intermediate, upper) ;
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implicit relation Dynamically-Immediately-Below
(lower:location, upper:location)
iff Source-Outlet(upper, lower) or
Pipe-Outlet(upper, lower) or
Switch-Setting(upper, lower)

The binary relation Immediately-Below is defined to hold between two objects
of type location, lower and upper, if and only if either the relation Source-Outlet
holds between upper and lower, or relation Pipe-Outlet holds ... etc. In other words,
Immediately-Below captures the connectivity of the package router structure of source,
pipes, switches and bins.

Similarly, Somewhere-Below is defined to hold between objects lower and upper if
and only if either Immediately-Below holds between lower and upper, or there ex-
ists some location intermediate for which Somewhere-Below holds between lower and
intermediate,and Immediately-Belowholds between intermediate and upper — that
is, Somewhere-Below is the transitive closure of Immediately-Below. For recursively de-
fined relations such as Somewhere-Below, (Gist assumes least fixpoint semantics where
the ordering is inclusion of relations.

Finally, relation Dynamically-Immediately-Belowis similar to Immediately-Below,
except for the case of switches, where it uses Switch-Settingrather than Switch-Outlet
to determine that only the pipe to which that switch is currently set is in the
Dynamically-Immediately-Below relation with that switch.

Implicitly defined relations can be queried just as regular, non-implicit, relations, for
example, within the definition of Somewhere-Below is a query of Immediately-Below.

Remarks: 1t i1s purely an implementation concern as to when and how to compute the
values of implicit relations (at one extreme we might compute their values only when
necessary, i.e., on evaluating a specific query of such a relation; at the other extreme we
might store and continually update their values so as to keep them up-to-date as changes
occur to the information in terms of which they are defined). The various tradeoffs
between such implementation alternatives may be of crucial importance in achieving a
sufficiently efficient implementation, but have no relevance to our aim of specification.

2.4 Specifying Transitions Between States

So far we have considered only the information that resides in individual states. What
happens in the transitions between states?

Primitive Changes in Transitions: Since the contents of a state comprise typed objects
and relations among those objects, transitions are comprised of a set of primitive changes
to these. In Gist, the allowed primitive changes are to:

insert that a relation holds among objects (if the relation already holds among those
objects, then such an insertion is legal, and is a no-op, i.e., makes no change),

remove that a relation holds among objects (if the relation does not hold among those
objects, then such a removal is legal, and is a no-op, i.e., makes no change),



98 Martin S. Feather

create a (new) object of a given type (this necessarily results in an object that is guar-
anteed to have not existed in any prior state), and

destroy an existing object (destruction of an object automatically removes all the re-
lations holding of that object, thus saving the specifier from the tedium of explicitly
writing all the removals).

For example, insert Package-Location(p, 11) is a primitive change, inserting the
relation Package-Locationbetween the package referred to by p and the location referred
to by 11.

Simultaneous Primitive Changes in Transitions: In a transition from one state to the
next, at least one such primitive change, and possibly many, take place. In the case of
multiple changes taking place in the same transition, they are assumed to take place
simultaneously, i.e., there i1s no ‘intermediate’ state in which some but not all of those
transitions have taken place. Gist’s atomic construct is used to group primitive changes
to have them occur simultaneously, for example,

atomic {insert Package-Location(p, 11); remove Package-Location(p, 12)}
simultaneously inserts that the relation Package-Location holds between package p and
location 11, and removes that it holds between p and 12.

Gist requires that following a transition, all the ‘inserted’ relations hold in the result-
ing state (e.g., following a transition in which insert Package-Location(p, 1) occurs,
Package-Location(p, 1) holds), all the ‘removed’ relations do not hold in the resulting
state, all the ‘created’ objects exist, and all the ‘destroyed’ objects do not exist. Thus,
Gist does not allow the simultaneous insertion and removal of the same relation among
the same objects, e.g.,
insert Package-Location(p, 1) and
remove Package-Location(p, 1) cannot both occur as primitive changes within a sin-
gle transition. We say that such a transition is ‘anomalous’, and is not allowed within any
behavior denoted by the specification. We will return to the precise meaning of anoma-
lous transitions shortly (Sect.2.6). Likewise, it is anomalous for a transition to insert
some relation involving an object that does not exist in the resulting state (which could
occur either because the object is destroyed in that transition, or because it didn’t exist
beforehand, and is not created by that transition), e.g.,
insert Package-Location(p, 1) and
destroy p cannot both occur as primitive changes within a single transition. Finally, 1t
i1s anomalous to create and destroy the same object in the same transition.

Transitions in the Package Router: For the package router, transitions include arrival
of a package at the source, movement of a package through the router, and changing of
switch settings.

Arrival of a package at the source can be modelled by the creation of a (new) object
of type package, whose location is set to the source, and whose destination is set to
some bin. Since a package’s location and destination are represented by the relations
Package-Location and Package-Destination respectively, setting these values is done
by inserting that the relation Package-Location holds between the package and the
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source, and inserting that the relation Package-Destination holds between the package
and some bin, as follows:

atomic { create p:package;
insert Package-Location(p, any source);
insert Package-Destination(p, any bin) 1}

In the above, create p:package creates a (new) object of type package locally named
p; the first of the insert statements inserts the relation Package-Location between
the new package and any object of type source — since there’s only one source in the
package router, this is unambiguous; the second of the insert statements inserts the
relation Package-Destination between the new package and any bin. Since there are
many objects of type bin, there are many possible evaluations of this statement — one for
each bin! The specification denotes a different behavior for each possible evaluation. We
refer to this multitude of possibilities as nondeterminism. The expression any bin has
multiple possible values (any one of the several bins). When such an expression is used
within a primitive statement, as in insert Package-Destination(p, any bin) above,
the result is a different behavior for each choice. An expression may have no values, for
example, if in some state there are no packages located at location 1, say, then

any p:package | Package-Location(p, 1)

s an expression without any values. A primitive statement that used the value of such
an expression, would be ‘anomalous’, e.g.,

insert Package-Location( any p:package | Package-Destination(p, 11), 12)
would be anomalous if there were no package with destination 11. Again, we defer further
discussion of ‘anomalous’ transitions until Sect. 2.6.

Top-level Statements Causing Transitions: A Gist specification comprises declarations
of types and relations, constraints that prohibit certain states from arising, and, as we
focus on now, top-level statements that cause transitions to take place, i.e., generate the
specification’s behaviors.

A Gist specification without any top-level statements would have as denotation a set
of behaviors each comprising a single state, e.g., the state of the package router at a
single moment in time. It is by including top-level statements that a Gist specification
denotes behaviors with multiple states. Each top-level statement in the specification
begins execution in the starting state. As they execute, they contribute the primitive
changes that comprise the transitions in the behavior. When all these statements have
completed their execution, the behavior is complete. For systems such as the package
router, we often make use of non-terminating statements to model the potentially infinite
behavior of the router, which is supposed to continue to route packages for ever.

In the case of multiple statements executing concurrently, Gist assumes an interleav-
ing and merging semantics, that is, in the transition from the current state to the next, at
least one, and possibly many, of the currently executing statements is/are executed until
it/they contribute a primitive change (or, through execution of an atomic statement, a
set of primitive changes); all the contributed primitive changes are unioned together to
form the transition to the next state. Unions of primitive changes that constitute ‘anoma-
lous’ transitions (e.g., the simultaneous insertion and removal of the same relation among
the same objects) are omitted from the denotation of the specification. In the case of
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multiple statements, every possible non-anomalous combination of at least one of those
statements 1s taken, producing a set of possible next transitions; this is manifest as a
branching in the behavior tree — from the current state, there may be many possible
continuations. Note that several statements can contribute to the same transition, 1.e.,
Gist not only interleaves multiple statements, but also merges them.

Top-level Statements wn the Package Router: The sources of activity in the package
router network are packages arriving at the source and moving through the router, and
switches in the router changing their settings.

Arrival of packages at the source is modelled as a continuous loop in which there is
choice of whether or not to create a new package at the source:

loop while true
do choose { null;
atomic { create p:package;
insert Package-Location(p, any source);
insert Package-Destination(p, any bin) } }

Gist’s loop statement is similar to that of conventional languages — it directs the
execution of the loop body. Other conventional constructs that Gist uses include the
conditional statement:
if <predicate> then <statement> else <statement>,
the sequential statement:
begin <statement> ; <statement> ; ... end,
the case statement, and so on. Ultimately these bottom-out at Gist’s primitive statements
that denote transitions, which make changes to the relations among objects, and create
or destroy objects.

There are couple more Gist-specific statements used in the above:

The statement null means to do nothing.

The statement choose { ... } is another compound statement, offering the nondeter-
ministic choice of any of its constituent statements. In this case, the choice is between
doing nothing, and creating a new package at the source.

By placing the above loop statement as a top level statement within the specification,
its execution commences in the starting state of the whole system.

Movement of packages through the router network i1s modelled as follows:

demon Move-Package-Through-Network(p:package)
when exists loc:location, next-loc:location |
Package-Location(p, loc) and
Dynamically-Immediately-Below(next-loc, loc)
do choose { null;
atomic{ remove Package-Location(p, loc);
insert Package-Location(p, next-loc) } }

Instances of Gist’s demon construct, such as this, are placed at the top level of the
specification. They contribute to the transitions between states in the following manner:
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in every state, for every instantiation of appropriately typed objects in that state to
parameters of the demon such that the demon’s predicate (which follows the ‘when’ key-
word) is true, the demon’s statement (which follows the ‘do” keyword) begins execution,
contributing its primitive changes to the transition that emerges from that state.

In the case of the Move-Package-Through-Network demon, there is one parameter
p, of type package. Thus, in every state, for every instantiation of p to some object of
type package existing in that state, the predicate is evaluated, and if true, the statement
begins execution. In this case, the predicate 1s that package p be located at some location
loc and there’s another location next-loc dynamically immediately below loc. The ac-
tivity is a choice of nothing, or the transition that models the movement of p from loc to
next-loc. Following the style outlined earlier, this transition is expressed as an atomic
containing a set of changes to be made simultaneously, the changes being to remove that
the relation Package-Location holds between the package and its current location loc,
and insert that it holds between the package and the next location next-loc. Recall that
bins never have any location below them, so once a package reaches a bin, it 1s not moved
by this demon.

The changing of switch settings is modelled similarly, as follows:

demon Change-Switch-Setting(s:switch)

when exists current-setting:pipe, other-setting:pipe |
Switch-Setting(s, current-setting) and
Switch-Outlet(s, other-setting) and
other-setting /= current-setting

do choose { null;

atomic{ remove Switch-Setting(s, current-setting);
insert Switch-Setting(s, other-setting) 3

By placing the declarations of these demons in the specification, along with the looping
statement modelling package arrival at the source, we now have modelled all the activity
of the package router.

Remark: We could equivalently have used a top-level statement in the form of an infinite
loop over all the switches, rather than a demon, to do this changing of switch settings.
The choice of construct is a matter of convenience and style.

2.5 Comnstraints on Behaviors

We have already introduced some constraints on the possible behaviors of the package
router — for example, that the switches be set to one of their outlet pipes. There are other
constraints that must be added, namely that packages eventually reach their destination
bins, and that no switch setting be changed while there is a package located in that
switch. These may be expressed as follows:

constraint Packages—-Reach-Their-Destinations
for-all p:package, destination:bin |
Package-Destination(p, destination) implies
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( exists s:past-present-or-future-state |
Package-Location(p, destination) as-of s );

constraint Switch-Setting-Not-Changed-While-Package-Present
for-all s:switch, pl:pipe, p2:pipe | pl /= p2 and
Switch-Setting(s, pl) and ( Switch-Setting(s, p2) as-of next )
implies Empty-Switch(s);

implicit relation Empty-Switch(s:switch)
iff not exists p:package | Package-Location(p, s) ;

The expression of each of these constraints makes use of the ability to make queries
about states anywhere in the current behavior, not just the state in which the query
itself is being evaluated. In particular, exists s:past-present-or-future-state

. quantifies over all states in the behavior, allowing us to ask whether there exists
some state s in which the package is located at its destination in that state (‘as-of s’
causes the query that precedes it to be evaluated in the state s). In the second constraint,
next is used to refer to the immediately following state. The constraint requires that in
any transition in which a switch’s setting changes (recognized by it being set to pipe pi
in one state, and a different pipe p2 in the next state), then the switch must be empty
in the first of those states. Note that while this disallows changing setting if a package
is present at the start of that transition, it does allow changing if a package enters the
switch simultaneously with the setting change — if the latter is also to be prohibited,
simply extend the right hand side of the implication to read:

Empty-Switch(s) and (Empty-Switch(s) as-of next).
The definition of Empty-Switch is given as an implicit relation.

Many specification languages provide similar abilities, in the form of temporal op-
erators such as eventually and next (state). Gist is not particularly progressive in this
regard, merely making use of this capability as useful for specification.

Remark: Since there is only one place in the specification where switches change their
settings, we could equally well have written this as a precondition on the switch setting
changing, thus:

demon Change-Switch-Setting(s:switch)
when exists current-setting:pipe, new-setting:pipe |
Switch-Setting(s, current-setting) and
new-setting /= current-setting
do choose { null;
precondition not exists p:package | Package-Location(p, s)
atomic{ remove Switch-Setting(s, current-setting);
insert Switch-Setting(s, new-setting) } }

2.6 Denotation of the Package Router Specification

We have completed all the essential elements of the idealized package router specification:
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— Type and relation declarations define the possible objects and relations among objects
that can occupy states;

— Constraints prohibit undesired states from occurring; and

— Top-level statements, which begin execution in the initial state, and demons, which
begin execution of their statements whenever their predicates are true, provide the
transitions from one state to the next.

Thus in our example, the loop statement that creates packages at the source, to-
gether with the demons that cause switches to change their settings and packages to
move through the network, generate the possible behaviors of the package router specifi-
cation. As stated earlier, Gist semantics interleave and merge these statements’ primitive
changes to form the transitions between states (e.g., a switch changes its setting, followed
by creation of a package, followed by that package moving into the topmost pipe simul-
taneously with a switch changing its setting, and so on). As in this system, there are typ-
ically many ways of performing such interleavings and mergings, offering a very potent
source of nondeterminism. The various sources of nondeterminism — expressions with
multiple values used within primitive statements, the choose statement, and finally the
interleaving and merging of the multiple statements and demons, all combine to generate
a multitude of possibilities, in line with the ‘generate’ aspect of our generate-and-test
philosophy.

By definition, the denotation of a Gist specification is the subset of the possible
behaviors which are not ‘anomalous’. Recall that a behavior will be anomalous if:

— any of 1ts states violates a constraint,

— any of its transitions’ activities violate any of their preconditions or postconditions
(semantically, these can be treated as ‘point constraints’),

— any of its transitions involve the simultaneous insertion and removal of the same
relation among the same objects, or

— any of its transitions involve the simultaneous creation and destruction of the same
object, or

— any of its transitions involve the insertion of a relation on an object that does not
exist in the end-state of that transition.

This is illustrated diagrammatically in Fig. 2, where the behaviors are drawn as a tree
whose root (at the top) is the common initial starting state, and whose paths from root
to leaf correspond to behaviors; the result of ‘pruning’ to meet the constraints is shown
on the right, where all the behaviors containing any bad states (states that violate one or
more constraints) have been omitted. Observe that sometimes whole subtrees get lopped
off by this process.

Thus our idealized package router specification denotes all possible behaviors in which
switches change or retain their settings (changing only when no packages are present),
while packages get created at the source and move downwards through the router to
eventually arrive at their destination bins (such that when moving out of a switch, a
package moves to the pipe to which that switch is currently set).

This illustrates the ‘generate-and-test’ style of specification — nondeterminism is used
to straightforwardly express a range of possible behaviors, while constraints are used to
discard those behaviors which are physically impossible (e.g., a switch being set to a pipe
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that is not one of its outlets), or undesirable (e.g., packages not eventually reaching their
destinations).

2.7 Summary of Constructs Used in the Specification
The various Gist features used in the specification of the idealized package router were:

types — used to represent the different kinds of objects in the package router (e.g.,
locations, packages).

relations — used to represent information about the state of the objects in the system
(e.g., package locations, switch settings).

implicitly defined relations — used to define information in terms of other informa-
tion (e.g., to define whether one location is ‘below’ another).

primitive statements — used to express the changes that take place in moving from
one state of the system to the next (e.g., movement of a package; change of a switch
setting).

compound statements — used to group together statements. We saw a simple loop

statement, an atomic statement, and a choose statement. Sequentiality is provided
by begin ... end blocks of statements (not used in the examples of this paper).
The atomic statement groups together statements so that execution of the atomic
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statement simultaneously executes all of its primitive statements within the same
transition (e.g., creation of a package object simultaneously with the assertion of
that package’s location and destination). Thus the atomic statement cannot include
sequential statements, nor most loop statements (however, simple forms of loops
that perform an atomic action on each member of a set of objects can be so included,
meaning the action is performed simultaneously on each of the objects in the set).

demons — used to cause some activity to take place whenever some condition is true
(e.g., a package to move to the next location).

temporal reference — used to extract information from arbitrary states within the
current behavior (e.g., to ask whether a package is ever located at its destination).

nondeterminism — used to generate a number of possible behaviors (e.g., a package
is created with any one of the bins as its destination; a switch’s setting may be left
alone, or changed; a package not already at a bin may stay in place or move to the
next location down in the router).

constraints — used to restrict the behaviors denoted by the specification (e.g., to just
those in which packages eventually reach their destinations). In conjunction with
nondeterminism, they support a ‘generate and test’ style of specification.

3 The Complete Package Routing Problem

The package router problem was constructed by representatives of the process control
industry to be typical of their real-world applications. A study of various programming
methodologies was done using this as the comparative example [22]. The complete de-
scription of the problem is as follows:

The package router is a system for distributing packages into destination bins.

A source station at the top feeds packages one at a time into the network,
which is a binary tree consisting of switches connected by pipes. The terminal
nodes of the binary tree are the destination bins.

When a package arrives at the source station, its intended destination (one of
the bins) is determined. The package is then released into the pipe leading from
the source station. For a package to reach its designated destination bin, the
switches in the network must be set to direct the package through the network
and into the correct bin.

Packages move through the network by gravity (working against friction), and
so steady movement of packages cannot be guaranteed; so they may “bunch up”
within the network and thus make it impossible to set a switch properly between
the passage of two such bunched packages (a switch cannot be set when there is
a package or packages in the switch for fear of damaging such packages). If a new
package’s destination differs from that of the immediately preceding package, its
release from the source station is delayed a (pre-calculated) fixed length of time
(to reduce the chance of bunching). In spite of such precautions, packages may
still bunch up and become mis-routed, ending up in the wrong bin; the package
router 1s to signal such an event.

Only a limited amount of information is available to the package router to
effect its desired behavior. At the time of arrival at the source station but not
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thereafter, the destination of a package may be determined. The only means of
determining the locations of packages within the network are sensors placed on
the entries and exits of switches, and the entries of bins; these detect the passage
of packages but are unable to determine their identity. (The sensors will be able
to recognize the passage of individual packages, regardless of bunching).

For the purposes of introducing Gist’s features, we omitted some of the details of the
complete version of the package router problem. We now discuss these details, and the
ways in which they complicate the specification.

3.1 Accommodating Misrouting of Packages

The complete problem makes it clear that there are circumstances in which the correct
routing of every package cannot be guaranteed. Hence the constraint
Packages-Reach-Their-Destinations that we included in our idealized version should
not be included in the complete version, because it would make the implementation task
impossible! In essence, there is nothing the implementation can do, given that it controls
only the setting of switches, to correctly route every package in the face of the potential
irregularity of package movement.
Instead, we would have to adopt a weaker constraint, for example:

Prohibit an empty switch being set (or left set) the wrong way with respect
to a package in the pipe entering that switch.

This can be expressed in Gist as follows:

implicit relation Switch-Set-Wrong-Way-For-Package(s:switch, p:package)
iff exists b:bin, pi:pipe |
Package-Destination(p, b) and Somewhere-Below(b, s) and
Switch-Setting(s, pi) and not Somewhere-Below(b, pi);

constraint Prohibit-Malicious-Empty—-Switch
not exists s:switch, p:package, b:bin, pi:pipe |
Package-Location(p, pi) and
Pipe-Outlet(pi, s) and
Empty-Switch(s) and
( Switch-Set-Wrong-Way-For-Package(s, p) as-of next )

The first definition is of a relation that holds of a switch and package if the switch lies
on route to the package’s destination bin, but is currently set the wrong way. The second
defines a constraint that prohibits the transition from a state in which there’s a package
immediately above an empty switch, to a state in which the package is in the switch, but
the switch is set the wrong way for that package.

In the problematic cases, when packages get bunched up, this constraint favors the
correct routing of the first package of the bunch. This might be inappropriate, e.g.,
favoring the majority of packages sharing the same destination bin (when a bunch of more
than two packages is formed) might be preferred. Presumably the ‘correct’ strategy for
routing will depend on the distribution of package arrivals (their times and destinations)
and package movement through the network.
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Remark: The above constraint has been carefully crafted to identify the very last oppor-
tunity to change (or leave correctly set) a switch’s setting for an approaching package,
based upon the constraint that prohibits changing the switch setting once there’s a pack-
age actually present in the switch. This careful crafting is indicative that either the
constraint itself is too ‘implementation’ oriented, or that there should be a better way of
specifying it (which perhaps Gist is not capable of stating). This remains (in my mind)
an interesting open issue, as does the connection to real time specification.

In any event, the complete specification calls for the signalling of misrouting, which
can be easily specified thorough a Gist demon, thus:

demon Signal-Misrouting-On-Arrival(p:package)
when exists b:bin | Package-Location(p, b) and
not Package-Destination(p, b)
do Signal-Misrouting(p, b)

where we assume that Signal-Misrouting(p, b) models the activity of signalling.

3.2 Availability of Information

Note that the Signal-Misrouting-On-Arrival demon above queries a package’s des-
tination (Package-Destination(p, b)) at the time the package reaches a bin. This is
perfectly acceptable for specification purposes — the demon merely specifies when sig-
nalling takes place. However, for implementation purposes, it may not be possible to
query the destination of a package arriving at the bin, and an implementation would
have to find some other way of computing the information necessary to know when to
do the signalling. Indeed, in the description given earlier of the complete package routing
problem, this is precisely the case. An implementation would presumably read packages’
destinations as they arrive at the source, and keep track of them as they move down
through the router, so as to be able to know when to signal misrouted arrivals.

The general point is that in a formal specification, we separately state the behaviors
required of the router, and the limits on availability of information. In specifying the
behaviors required, we are not constrained in any way by these limits; we can continue
to express our behavioral specification in terms of information drawn from anywhere in
the system.

Expressing the limits on availability of information is relatively easy. The imple-
mentation is allowed to know the structure of the package router (i.e., type location
and its subtypes source, pipe, switch and bin, relations Source-Outlet, Pipe-Outlet,
Switch-Outlet and Switch-Setting). Additionally, it can know of the arrival of a pack-
age at the source, and, in the state following that transition, the destination of such a
package, i.e., it can know the value of the bin b for which Package-Destination(p, b)
is true, for just-arrived package p. Finally, it can know of the passage of packages past
sensors, i.e., the occurrence of transitions when a package moves into / out of switches,
and into bins (and, presumably, the identity of those locations).

In implementing the control mechanism we would be concerned with how to deduce
from this available information the information necessary to set switches as required and
issue misrouted signals. As we have stated before, the purpose of the specification is
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merely to state the requirements, not to do this implementation (however, see the next
section for related comments).

3.3 The Intertwining of Specification and Implementation

Balzer and Swartout have pointed out [34] that the natural-language statement of the
package router problem already mixes implementation with specification. An example
is the recognition that misrouting is inevitable given the vagaries of package movement
through the router. Similarly, the sensors provide enough and just enough information to
permit an implementation of the switch controller. Their conclusion is that the processes
of ‘specification’ and ‘implementation’ are not as separable as we would like to believe,
and that development must take into account, in fact, support, such interleaving. This
does not detract from the need for specification languages — we still need to be able to
represent specifications and their intermediate versions as implementation concerns are
taken into account.

4 The Elevator Example

I now consider another problem, that of elevators (‘lifts’ in British terminology) in a
multi-story building, used by passengers to get to their destination floors. In a very
abstract sense, this is similar to the package router problem, insofar as they both concern
the transportation of objects to their destinations. Thus by presenting (portions of) the
Gist specification of elevators, this should reinforce the message of how to use Gist’s
constructs for specification. Additionally, this example will serve as illustration for the
following section’s consideration of the development from specification of the system as
a whole towards specification of the individual pieces, and the interfaces among them.
Following the manner in which we specified the package router, we may specify the
elevator controller by specifying a closed system involving the activities of elevators
(moving between floors and opening/closing their doors) and passengers using those
elevators (entering and exiting). The interleaving of these capabilities denotes a large
set of transportation behaviors. Constraints prune this set, eliminating both physically
impossible behaviors (e.g., ones involving passenger entry through a closed door), and
undesirable behaviors (e.g., a passenger getting farther from his/her destination).

type floor = 1..topfloor;
type elevator;
type passenger;

relation AtFloor(elevator, floor);

relation DoorsOpen(elevator);

relation Location(passenger, floor union elevator);
relation Destination (passenger, floor);

loop while true
do choose { null ;
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atomic { create p:passenger;
insert Location(p,any floor);
insert Destination(p,any floor) } };

demon passenger-activity(p:passenger)
when true
do choose
{ null;
precondition exists f:floor, e:elevator |
Location(p, f) and
(not Destination(p, f)) and
AtFloor(e, £) and DoorsOpen(e)
atomic { insert Location(p, e); remove Location(p, f) };
precondition exists f:floor, e:elevator |
Location(p, e) and DoorsOpen(e) and
AtFloor(e, f)
atomic { insert Location(p, f); remove Location(p, e) } };

demon elevator-activity(e:elevator)
when true
do choose
{ null ;
precondition not DoorsOpen(e) insert DoorsOpen(e) ;
precondition DoorsOpen(e) remove DoorsOpen(e) ;
precondition (not DoorsOpen(e)) and
exists f:floor | AtFloor(e, f)
choose
{ atomic {insert AtFloor(e, f+1); remove AtFloor(e, f)J};
atomic {insert AtFloor(e, f-1); remove AtFloor(e, f)}}
3

implicit relation FLocation(p:passenger,f:floor)
iff Location(p, f) or
exists e:elevator | Location(p, e) and AtFloor(e, f);

constraint no—-farther-from-destination
not exists p:passenger |
Abs( FLocation(p,?) - Destination(p,?) ) <
Abs( FLocation(p,?) - Destination(p,?) ) as—of next;

constraint capacity-of-elevator
not exists e:elevator | Size({p:passenger | Location(p,e)}) > 10;

constraint each-passenger-has-unique-destination-and-location
all p:passenger | Size({f:floor | Destination(p, £)}) = 1 and
Size({l:floor union elevator | Location(p, 1)}) = 1;
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constraint each-elevator—always-at-unique-floor
all e:elevator | Size({f:floor | AtFloor(e, f)}) =1

The above specifies the types that are used to model objects of the elevator world,
namely floors (represented as integers in the range I to topfloor), passengers and eleva-
tors, and relations used to model the relationships among those objects, e.g., the floor
at which an elevator is located AtFloor, the location of a passenger, either a floor or an
elevator Location.

Passenger appearance is modelled by an infinite loop that may choose to create a new
passenger at a floor.

Passenger activity is modelled by a demon that, for each passenger, chooses either
to do nothing, to cause the passenger to enter a elevator (provided that the passenger
is at a floor where the elevator is also located, and that the elevator’s doors are open),
or to cause the passenger to exit an elevator (provided that the passenger is inside the
elevator, and the elevator’s doors are open).

Passengers objects never disappear from the system — they simply remain at their
destination floors, once they finally get there. If this is deemed stylistically inappropriate,
it would be a simple matter to add a demon that destroyed such objects.

Elevator activity is modelled by a demon that, for each elevator, chooses either to do
nothing, to open the doors (provided the doors are closed), to close the doors (provided
the doors are open), or to move the elevator up or down one floor (provided the doors are
closed). Note that because the relation AtFloor is declared to hold between an object of
type elevator and an object of type floor, and because type floor is declared to be an
integer in the range 1..topfloor, elevator activity is implicitly constrained to prohibit
movement of an elevator to a floor not within that range.

The denotation of the specification is all possible interleavings of these activities,
pruned by all the constraints. Note the use of a mixture of preconditions and constraints
to specify restrictions on the possible relationships, e.g., that each passenger is always
located at exactly one location, either a floor or an elevator. The possible transporta-
tion behaviors, even if quite safe, include many undesirable behaviors from the point
of view of getting passengers rapidly to their destinations. Hence some constraints are
present to further restrict the system behaviors to only those in which acceptably effi-
cient transportation of passengers occurs, e.g., ones in which passengers never get farther
from their destinations. This last works by prohibiting the existence of a passenger whose
distance from destination in one state is less than that in the next state (note the use of
FLocation to cause this calculation for a passenger inside an elevator to use the elevator’s
floor location to do the calculation).

The above specification makes occasional use of a few constructs not introduced in
the package router example, which need explanation:
functions, Size, Abs + and -,
set-former notation, e.g., { f:floor | Destination(p, ) }, denoting the set of all
floors £ which are destinations of passenger p, and
retrieval of values from relations, e.g., Destination(p,?) is an expression whose value
is the floor related to passenger p by the relation Destination.



Behavior Oriented Specification in Gist 111

4.1 Summary of Constructs Used in the Elevator Specification

Gist’s features were used in the elevator specification in a similar manner to the way in
which they were used in the package router. Briefly:

types — used to represent the different kinds of objects (e.g., floors, passengers).

relations — used to represent information about the state of the objects in the system
(e.g., passenger locations, status of elevator doors).

implicitly defined relations — used to define the relation FLocation between a pas-
senger and a floor to be the floor at which either the passenger is directly located, or
where there’s the elevator the passenger is inside.

primitive statements — used to express the changes that take place in moving from
one state of the system to the next (e.g., change of location of a passenger; change
of status of an elevator’s doors).

compound statements — used to group together statements. Again, loop, conditional,
choice and atomic statements came into play in this specification.

temporal reference — used in expression of the constraint that passengers not get
farther from their destination floors.

nondeterminism — used to generate a broad range of transportation behaviors (e.g.,
choice of movement of elevators in either direction, choice of passenger activity).

constraints — used to restrict the behaviors denoted by the specification to both physi-
cally possible ones (e.g., in which passengers don’t pass through closed elevator doors)
and desirable ones (e.g. that passengers never get farther from their destinations).

5 Initial Stages of Developing an Implementation

The elevator specification denotes behaviors required of the closed system, comprised of
elevators and passengers. A typical implementation of this system will combine several
components, an elevator controller, in charge of all the elevators, and individual passen-
gers. We can use the system specification as an implicit specification of those components,
namely those which, in combination, achieve the specified closed system behaviors. Thus
if the ultimate task is to develop the implementation of one or more of the components,
then an important step in that development will be the decomposition of the closed
system specification into explicit specifications of individual components. Note that the
closed system specification may be neutral with respect to which of its components we
are to implement — for example, our task might be to develop an implementation of the
elevator controller, or equally well to develop the implementation of individual passen-
gers! The latter possibility would make sense if developing a users’ guide for passengers,
or if developing an implementation for robots that are to use elevators in order to travel
between floors in a multi-story building.

When system-wide constraints occur in a Gist specification, the decomposition step
must split those constraints into pieces such that each piece can be assigned as the ‘re-
sponsibility’ of individual components. Thereafter, an implementation can be developed
for each component in isolation, assured that their combination will in fact achieve the re-
quired system behaviors. For example, the system-wide constraint that passengers never
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get farther from their destinations implicitly constrains both passengers and the eleva-
tor controller. In order to emerge with an implementation of the individual passengers
and/or of the elevator controller, this constraint must be decomposed into constraints
on the individual components. To reach one such decomposition, consider splitting the
original constraint into the following two constraints:

C'1: passengers whose destinations lie in different directions should not be in the same
elevator, and

C2: an elevator with passengers inside should not move away from any of those passen-
gers’ destinations.

The combination of C7 and C2 satisfies the original constraint. Notice that C2 alone
would ensure the original constraint (since passengers would never be moved further
from their destinations), however C1 is also needed for progress, to ensure that an eleva-
tor won’t get deadlocked with passengers needing transportation in different directions
inside.

Having done this decomposition, C7 can be assigned as the responsibility of the
passengers, and C2 as the responsibility of the elevator controller, bringing us a step
closer towards an implementation. Of course, C7 requires further decomposition in order
to emerge with constraints on individual passengers rather than on passengers as a group.
This snapshot of the development process raises several issues:

— What does it mean to say that a constraint is the responsibility of some subset of the
system’s components? We answer this fully in Sect. 5.1. Briefly, only the responsible
components should need to limit their activities in order to meet the constraint.
Referring back to the package router example, we might say that the constraint
for correct routing of packages i1s the responsibility of the router, not the arriving
packages: packages arriving at the source must be left with complete freedom to
have any of the bins as their destinations — we would not be very happy with an
implementation of package router that could route packages correctly provided that
all the arriving packages always had the leftmost bin as their destination!

— Individual components may need access to information about other components in
order to meet their assigned constraints. For example, in order to meet constraint
C2 the elevator controller must know the direction toward the destinations of the
elevator’s passengers. This need for information may induce the need for interfaces
and associated protocols of use between the components. Continuing the example,
the floor buttons inside an elevator are there to allow the passengers to indicate their
destination floors to the elevator controller (from which the controller can deduce
which way to move the elevator). This is examined further in Sect. 5.2.

— There need not be a unique way of decomposing system wide constraints. Typically
there will be a choice of decompositions, each with its own information needs, and
hence its own set of interfaces among components. Choice of the ‘best” implementa-
tion will take into account properties of these interfaces (e.g., cost, reliability). Indeed,
the interface needs may even motivate reconsideration of the system constraints. For
example, if we are prepared to weaken the constraint that passengers never get farther
from their destinations, we can derive an elevator system with a simpler interface,
but less expedient transportation of passengers to their destinations — a particularly
dumb elevator could repeatedly move from bottom floor to top floor, and back down
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again, stopping at every intermediate floor; passengers could board the elevator and
stay on board until it finally reached their destination floor. The only information
passengers would need is to be able to recognize when they have arrived at their
destination floor. Choice of decompositions (of constraints) is an instance of a more
general question of design tradeoffs, and goes beyond the brief of this paper; the
reader is referred to [17, 18] for further discussion of our explorations in this area.

5.1 Assigned Responsibility for Constraints

I first introduce the notion of ‘component’, and then address what it means for a con-
straint to be assigned as the responsibility of a component.

Components: The notion of ‘component’ is an addition to the Gist language features
described so far. The components of a specification are some some subset of the spec-
ification’s objects. By declaring a type to be a component, all instances of that type
are declared as components (e.g., by declaring type passenger to be a component, every
passenger object would be declared to be a component). New objects can be introduced
to serve as components (e.g., the elevator controller would be introduced and declared
as a component).

Broadly speaking, each of the activities of the specification (demons and top level
statements) is associated with one component object. This has the effect of ascribing
each primitive change done by an activity (when it contributes that primitive change to
a transition from one state to the next) as having being done by the associated compo-
nent. For example, if the elevator-activity demon 1s associated with the elevator-controller
component, then every primitive transition done by that demon, namely movement of
an elevator between floors, or opening or closing of an elevator’s doors, is ascribed as
having been done by the elevator-controller component. In the case of passengers, there
is a single passenger-activity demon, but we need to ascribe its primitive transitions to
the component that is the particular passenger entering/exiting. To do this we make
each passenger object a separate component, and associate the passenger with the cor-
responding instantiation of the demon on that same passenger. The result of this is that
a passenger’s entry into, or exit from, an elevator is ascribed as being done by that
passenger.

In the elevator example, it turns out there is the need to distinguish passenger appear-
ance from passenger interactions with elevators — passenger appearance will be left un-
constrained (akin to the package router wherein packages are allowed to arrive at any time
with any bins as their destinations), while passenger interactions with elevators are fur-
ther constrained. Hence I introduce another component object, passenger-appearance,
associated with the to level loop statement that creates a passenger at some floor with
some destination. Those primitive changes are ascribed as having been done by the
passenger-appearance component.

A straightforward way of indicating components and their associated activities is
shown for the elevator specification, next:

type floor = 1..topfloor;
type elevator;
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component type passenger;
component passenger-appearance;
component elevator—-controller;

... relation definitions as before

loop while true
do choose ...demon statement as before
activity-of (any passenger-appearance);

demon passenger-activity(p:passenger)
when true
do ...demon statement as before
activity-of p;

demon elevator-activity(e:elevator)
when true
do ...demon statement as before
activity-of (any elevator-controller);

.remainder of definitions as before

In the above, component is used to declare instances of type passenger to be compo-
nents, and two new objects, passenger-appearance and elevator-controller to be
components. The top-level loop statement is declared to be an activity of the
passenger-appearance component, elevator-activity demon is declared to be an
activity of an elevator-controller component (of which there will be only the one),
and invocation of the passenger-activity demon on passenger p is declared to be an
activity of that passenger component p.

The net result of all this is that every primitive change in each transition of each
behavior is ascribed as being done by one or more components (more than one arises
if the same primitive change is simultaneously contributed to the same transition, and
those changes are ascribed as being done by several different components — then, each
of those components is said to have done that change; this complication does not arise
in the examples considered in this paper).

Assigned Responstbility: Intuitively, when a constraint has been assigned as the respon-
sibility of particular components, only those components are to limit their activities to
prune out behaviors violating the constraint.

Recall that pruning discards behaviors from the set of possible behaviors to retain
only those that satisfy the constraints. Consider pairs of behaviors, one from the set of
behaviors retained by pruning, one from the set of behaviors discarded by pruning. They
will diverge at some state, where up to that state they have performed exactly the same
transitions, but their transitions emerging from that state differ (i.e., have a different set
of primitive changes). We say that pruning is achievable by a set of components if for
every such pair of behaviors (one retained, one discarded), the transitions at their point



Fig. 3. Assigned responsibility pruning
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Suppose that there is a constraint that prohibited passengers whose destinations lie in
different directions from being in the same elevator, and further suppose that passengers
pl and p2 have destinations in different directions. Then:

— Under the plain style of constraint pruning (without considering assigned responsi-
bility), this would discard the behavior(s) including transition 4, because it leads to
a state violating the constraint.

— If, however, the constraint were assigned as the sole responsibility of passenger p1i,
then discarding only the behavior(s) including the transition ¢4 would rely upon
component p2, which is not responsible, to make the only difference between the
retained transition {2 and the discarded transition ¢4. Instead, to meet the respon-
sibility, pruning must discard not only transition ¢/’s behaviors, but also transition
t2’s behaviors. This works because the responsible component, p1, does something
different between every pair of discarded and retained behaviors, namely, enters, or
does not enter, the elevator. Intuitively, p1, the sole responsible component, cannot
risk entering the elevator because to do so relies upon p2 to choose to not enter at
the same time.

Note that in order to prune to meet assigned responsibility constraints, it may be
necessary (as in the small example) to discard more than just the behaviors that violate
the constraint.

QOutline of Definition of Assigned Responsibility Pruning: Here follows a brief outline of
the definition of pruning of behaviors when constraints have been assigned responsibility.

— Assigned responsibility pruning: Given a set of behaviors, a pruning is some subset
of those behaviors. Assigned responsibility pruning of a set of behaviors is the largest
acceptable pruning of that set.

— Acceptable: A pruning is acceptable if| at every state in the tree of pruned behaviors,
pruning is pointwise acceptable.

— Tree of behaviors: A set of behaviors may be regarded as a tree of behaviors, by sharing
common initial segments of those behaviors (recall that a behavior is a sequence of
states separated by transitions).

— Pointwise acceptable: At a state in a tree of pruned behaviors, pruning is pointwise
acceptable if every transition emerging from that state is distinguishable from every
transition omitted at that state by the components responstble at that state.

— Omnutted: A transition is omitted at a state within a tree of pruned behaviors if it is
is not among the transitions emerging from that state, but is among the transitions
emerging from the corresponding state in the tree of unpruned behaviors.

— Distinguishable: Two transitions are distinguishable by a set of components if their
sets of primitive changes differ with respect to the changes ascribed to one or more
of those components (recall that a transition comprises a set of primitive changes,
and each primitive change is ascribed as having been done by some component).

— Responsible at a state: The set of components responsible at a state is the union of
the sets of components responsible for behaviors pruned at that state.

— Responsible: The set of components responsible for a behavior is the union of the sets
of components assigned responsibility for the constraints violated by that behavior.
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— Pruned at a state: A behavior is pruned at a state if that behavior is included in
the unpruned behaviors, but not included in the pruned behaviors, and the state is
the lowest (latest) state in the behavior that is among the states within the tree of
pruned behaviors.

For a more extended discussion of the definition and properties of such pruning, see

[14].

5.2 Portion of Development of the Elevator System

I illustrate some of the intertwining between constraints and interfaces by showing a
portion of the early stages of the development from the elevator specification towards an
implementation.

My claim is that the interfaces present in typical elevator systems are there to provide
information so as to permit the components to meet their responsibilities. For example,
the presence of buttons on each floor to summon elevators is an interface to pass infor-
mation from passengers to the elevator controller; the direction lights that indicate which
way an elevator will move are present to pass information from the elevator controller to
passengers. These interfaces arise as part of the development process from closed system
specification toward specifications of the individual components, and ultimately their
implementations.

To investigate this, I have rationalized the design of existing elevator systems by
starting from the Gist specification of Sect. 4, incrementally decomposing the system-
wide constraints into pieces which can be assigned as the responsibility of individual
components, determining the information that each component needs to live up to its
responsibilities, and deducing possible interfaces that provide such information. A portion
of this development process is shown next; the complete development is to be found in
[14]. As will be obvious, my decompositions are done in an ad-hoc manner; for a more
organized approach to this (and related) activity, see [11].

1. The initial constraints defining suitably rapid transportation are:

(a) no-farther-from-destination — a passenger must never move further from
his/her destination floor.

(b) no-delay-to-riders — passengers riding inside elevators must not be unneces-
sarily delayed. ‘Unnecessary delay’ can be defined on a history as a contiguous
sequence of states during which a passenger was inside the elevator while the
elevator remained inactive (didn’t move, open or close its doors, or take on or let
off passengers).

These constraints are initially assigned as the joint responsibility of the controller

and all passengers.

2. Decompose! no-farther-from-destination by:

(a) Defining the (single-valued) Passenger Direction (P-D) of a passenger to be the
direction (up or down) in which that passenger must go to reach his/her des-
tination floor. (More precisely, the P-D of a passenger will have no value when

! To be valid, a decomposition of a constraint must result in a specification whose set of behav-
iors is a subset of the behaviors of the original specification
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the passenger is at his/her destination floor, so it is either single-valued or has
no value.) This definitional step names a piece of information in preparation for
future steps.

(b) Choosing the implication of no-farther-from-destination, that all riders in
a moving elevator have the same P-D values, to become the explicit constraint
riders-in-moving-elevator-compatible. This is assigned as the responsibility
of the controller and all passengers.

(¢) Using the introduced constraint to simplify no-farther-from-destination; its
simplified form is that a moving elevator with a rider must be moving in that
rider’s P-D direction.

(d) Assigning the simplified form of no-farther-from-destination as the respon-
sibility of only the elevator controller. The constraint is renamed accordingly to
move-in-rider’s—-P-D.

The above steps show how one of the initial system-wide constraints,
no-farther-from-destination, is decomposed, and the resulting pieces assigned as
the responsibility of individual components within the system. Continuing this process
eventually leads to the behavior and interface typical of many elevator systems.

5.3 Summary of initial stages of implementation development

We have seen how the initial stages in the development from a system-wide Gist specifi-
cation address the decomposition of the ‘closed system’ specification into specifications
of the individual components. System-wide constraints are decomposed in order that
their pieces can then be assigned as the responsibility of the individual components. This
results in specifications of the individual components from which implementations can
thereafter be developed independently, assured that their combination will achieve the
behaviors desired of the system. In the course of this development, the interfaces between
components and associated protocols of use of those interfaces emerge as those required
to provide components with the information they will need to meet their individual
specifications.

The need for this decomposition arises from Gist’s encouragement of the closed system
style of specification, together with its generate and test way of expressing behaviors. For
systems that interact in an ongoing and non-trivial manner with their environments (of
which the package router and the elevator controller are simple examples), it is often
clearest to specify them as closed systems, and proceed with development from that
point.

6 Related Work

6.1 Gist-specific Related Work

Gist was developed primarily by Bob Balzer, Neil Goldman and David Wile at ISI, based
on the principles that they first established for such a language [3] and their belief in the
development of software by transformation from specifications [4]. A considerable amount
of research related to specification issues has been done by these people, and the other
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past and present members of Bob Balzer’s Software Sciences Division at ISI: Dennis
Allard, Bob Balzer Kevin Benner, Don Cohen, Wellington Chiu, Lee Erman, Michael
Fehling, Steven Fickas, Neil Goldman, Lewis Johnson, Yingsha Liao, Philip London,
Matthew Morgenstern, Jay Myers, K Narayanaswamy, Bill Swartout, David Wile and
Kaizhi Yue.

Our group’s experiences with Gist, and companion efforts work on the software de-
velopment process, are summarized in [2]. Briefly, we have found the following issues
to hold for Gist specifications of complex systems (and, we believe, hold for all formal
specifications, regardless of the language):

Hard to read — whatever the formalism, newcomers unfamiliar with it have a hard
time understanding what it means. We have experimented with tools that automat-
ically paraphrase Gist specifications in English [32, 33]. See also the hard to write
item for further methods to present complex specifications.

Hard to analyze — discovering and/or proving properties of Gist specifications is quite
difficult. We have built a symbolic evaluator to explore the dynamic implications of
Gist specifications, and hooked this to the paraphraser (mentioned above) to present
these to the reader [9]. Scaling up symbolic evaluation to large specifications is prob-
lematic, however. Recently we have been exploring simulation together with abstrac-
tion — essentially, given a question we would like to ask of the behaviors denoted
by a specification, we abstract from the fully detailed specification to get a smaller
version with only those aspects relevant to the question, and then employ simulation
of that smaller version to find the answer [6].

Hard to write — large, complex systems have large and complex specifications, in spite
of the advantages provided by specification languages. Incremental development of
specifications is one way to mitigate the difficulty of construction, explanation and
modification of such specifications [20]. ‘Evolution transformations’ are our trans-
formational technology to support this process - they are transformations designed
to deliberately change the meaning of the specification to which they are applied
[15, 24].

Hard to implement — we are not able to transform an arbitrary Gist specification into
an implementation. Gist’s wide range of powerful constructs is quite hard to imple-
ment in general, although it is clear what the major subtasks of such a process must
achieve [27]. We have explored the transformational implementation of some subsets
of these properties, for example, temporal reference to past states (“historical” ref-
erence) is amenable to transformational implementation [16]. Another approach that
we have taken is to extract some of Gist’s features, notably the relational database
together with demons and a variation on the notion of constraints, and layer these
on top of a conventional programming language, Common Lisp (we are also working
on doing the same on top of Ada) [10]. These ideas are incorporated into a sizable
programming environment that our group uses on a day-to-day basis [19].

We have built an experimental environment to support requirements acquisition and
specification construction; within this, Gist forms the core of the common knowledge
representation language for expressing the requirements and the emerging specifications

[25, 26].
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6.2 Other Related Work

Other work on ‘behavior oriented specification” includes Milner’s CCS calculus [28, 29],
essentially a calculus for reasoning about trees of behaviors; Dijkstra’s guarded commands
provide a well-grounded basis for describing and reasoning about distributed systems [12];
based on this is the ‘action systems’” work [1], somewhat similar in style and purpose to
our Gist efforts. The language ERAE [21] is also similar to Gist in terms of constructs
and approach to specification.

Individual features of Gist derive from previous work:

— The relational data base model - espoused by [31].

— Temporal logic, at least in its use to talk and reason about the past. Gist’s use of
historical reference is very close to the approach of Sernadas in his temporal process
specification language, DMTLT ([30]).

— Automatic demon invocation - seen in the Al languages PLANNER and Qlisp ([8]).

— Non-determinism in conjunction with constraints - closest to non-deterministic au-
tomata theory, [23].

— Operational semantics and closed system assumptions - as seen in simulation lan-
guages, [7, 35]), and overviewed in [36].

Since the development of Gist, there have been some continuations of some closely
related ideas:

— Formal semantics for assigning constraints as the responsibility of particular compo-
nents are given in terms of a deontic logic [13].

— The role of ‘responsibility’ during system design has been studied further: [17, 18].

— A model to support the acquisition of requirements, leading through a Gist-like spec-
ification towards an implementation, has been proposed and studied [11].

7 Conclusions and Acknowledgements

These notes have attempted to give a feel for Gist, a specification language designed to
facilitate the expression of systems exhibiting complex, ongoing behaviors. There is a
growing consensus that in order to achieve major improvement in software production
and maintenance, the entire programming process must be formalized and given machine
support (see, for example, the joint report [5]). The keystone of such an approach is the
formal specification of the requirements of the task to be programmed, for which purpose
a specification language tailored for ease of expression of such requirements is essential.

Gist has been developed by members of Bob Balzer’s Software Sciences Division at IST,
supported by the Defense Advanced Research Projects Agency, Rome Air Development
Center, and the National Science Foundation. Views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official opinion or policy of DARPA, RADC, NSF, the U.S. Government, or any other
person or agency connected with them. Thanks are due to Prof. Dr. Bernhard Moller,
for his careful scrutiny of earlier drafts of this document.
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